Check and accept Disclaimer before use
Welcome to Table-Search.com
Most the world best AI models of "Table Question Answering" can process fast only <100 records.
This the only New AI system based on LLM that can take: 100... up to 20 000 !!! records
Remarkable speed in generating human-readable queries.
The system can handle such complex Queries to table as:
> java with rating above 4.7 and review num > 5kQueries can contain:
> want to see adventure movies about space
> all bananas with price < $2
> give me all Chinese restaurants near Boston
> show me all AI event after Apr-2023
Testing "Table Question Answering" at any size for:
Below are examples of uploading JSON data through REST API.
JSON format is a plain Array with key-value pairs. Example:
[
{
"name": "John", "age": 25, "city": "New York"
},
{
"name": "Jane", "age": 30, "city": "Los Angeles"
}
...
]
You can create new table for testing. For example with name: abc_tset_table
Your table name will be part of the URL: https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/abc_tset_table
Example of Function to POST JSON
import json
import requests
def post_test_json():
try:
test_data = [
{"id": "crgqulicdqn60bdjf4", "name": "John", "age": 25, "description": "John is a good guy. Doctor."},
{"id": "crgqulicdasdfbdjf4m0", "name": "Alice", "age": 22, "description": "teacher in school"},
{"id": "crgwewrtlicdqn60bdjf4m0", "name": "Bob", "age": 30, "description": "software engineer with Java skills"},
{"id": "crgqugfhcdqn60bdjf4m0", "name": "Ivan", "age": 40, "description": "manager in big company"},
]
table_id = "abc_tset_table"
full_url_to_dev_public = "https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/" + table_id
headers = {
'Content-Type': 'application/json'
}
json_to_post = {"data":test_data}
response = requests.post(full_url_to_dev_public, data=json.dumps(json_to_post), headers=headers)
assert response.status_code == 201
print("DB table created: ", response.json()['db_name'])
print(response.json())
except requests.RequestException as e:
print("Error: uploading json." + e)
return None
At any point of time you can add additional data to your AI Search data.
Use the same url, but now with PUT: https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/abc_tset_table
Pay attention to the fact that if all identity values match with existing key it will be updated to the new the value. If not all identity fields match - a new record will be added.
Example:
def add_to_file():
try:
add_data = [
{"id": "crgqugfhcdsadf0bdjf4m0", "name": "Nikole", "age": 34, "description": "working in airlines"},
{"id": "crgqugfhc34gshdbdjf4m0", "name": "Sara", "age": 28, "description": "going back home, eating pizza"},
]
table_id = "abc_tset_table"
full_url_to_dev_public = "https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/" + table_id
headers = {
'Content-Type': 'application/json'
}
json_to_post = {"data":add_data}
response = requests.put(full_url_to_dev_public, data=json.dumps(json_to_post), headers=headers)
assert response.status_code == 200
print("Data added to DB table: ", response.json()['db_name'])
print(response.json())
except requests.RequestException as e:
print("Error: uploading json." + e)
return None
To delete records you need to provide JSON Array only with one key field values. See Example in code.
Use the same url, now with DELETE: https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/abc_tset_table
Example:
def delete_from_file():
try:
delete_keys = [
{"id": "crgqulicdasdfbdjf4m0"},
{"id": "crgqugfhcdqn60bdjf4m0"}
]
table_id = "abc_tset_table"
full_url_to_dev_public = "https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/" + table_id
headers = {
'Content-Type': 'application/json'
}
json_to_post = {"data":delete_keys}
response = requests.delete(full_url_to_dev_public, data=json.dumps(json_to_post), headers=headers)
assert response.status_code == 200
print("Data DELETED to DB table: ", response.json()['db_name'])
print(response.json())
except requests.RequestException as e:
print("Error: deleting json." + e)
return None
Example of Function to Question Answer your json data uploaded above:
def query_uploaded_table(table_id, query, generative_type = None):
try:
full_url_to_dev_public = "http://127.0.0.1:8080/api/ai_search/v1/target-group-http-ai-linked-dev/" + table_id
headers = {
'Content-Type': 'application/json'
}
full_request = full_url_to_dev_public + "?query_param=" + query
# set generative_type == 'base' to apply AI to generate result in response['result']['response_explanation']
# AI generative part will be applied only if matching score is high enough
if generative_type is not None:
full_request += "&generative_type=" + generative_type
search_result = requests.get(full_request, headers=headers)
return search_result.json()
except requests.RequestException as e:
print("Error: reading data." + e)
return None
Example of usage:
if __name__ == '__main__':
post_test_json()
add_to_file()
table_id = "abc_tset_table"
query = "who is planning to eat?"
print("Query: " + query)
query_response = query_uploaded_table(table_id, query)
print("Answer:" + query_response['result']['companies'][0]['loaded_data_categories']['description'])
# sample with generative_type == 'base'
query = "do we have java software engineer?"
print("Query: " + query)
query_response = query_uploaded_table(table_id, query, 'base')
print("Answer AI Generative part:" + query_response['result']['response_explanation'])
Some of your input data is indexed automatically for automatic hinting. That is usually caption or title text data.
Example of Function to get hints - just add /hints:
def query_uploaded_table(table_id, query):
try:
full_url_to_dev_public = "https://www.table-search.com/api/ai_search/v1/target-group-http-ai-linked-dev/" + table_id + "/hints"
headers = {
'Content-Type': 'application/json'
}
search_result = requests.get(full_url_to_dev_public + "?query_param=" + query, headers=headers)
return search_result.json()
except requests.RequestException as e:
print("Error: reading data." + e)
return None
Example of usage:
if __name__ == '__main__':
post_test_json()
add_to_file()
table_id = "abc_tset_table"
query = "who is planning to eat?"
print("Query: " + query)
query_response = query_uploaded_table(table_id, query)
print("Answer:" + query_response['result']['companies'][0]['loaded_data_categories']['description'])
For Production in headers, you must provide a secrete value with the name: X-ai-linked-token
For POST/PUT/DELETE - use write secrete; for GET use - read secrete.
Please check the example below, pay attention to headers, and URL instead of public you must use your client_id:
def query_uploaded_table(table_id, query):
try:
full_url_to_dev_public = "https://www.table-search.com/api/ai_search/v1/client_id/" + table_id
headers = {
'Content-Type': 'application/json',
'X-ai-linked-token': 'your-read-level-secrete-here'
}
...
Last updated: 08/19/2024